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In this work we have constructed a 
full 2D remapping method to be used 
on a staggered polygonal mesh. This 
technique has been implemented into 

an Arbitrary-Lagrangian-Eulerian (ALE) 
code. It combines and generalizes previous 
work on the Lagrangian and rezoning phases 
including this new remapping algorithm [1]. 
In the Lagrangian phase of the ALE method 
we use compatible methods to derive the 
discretizations [2, 3]. We assume a staggered 
grid where velocity is defined at the nodes, 
and where density and internal energy 
are defined at cell centers. In addition to 
nodal and cell-centered quantities, our 
discretization employs subcell masses 
that serve to introduce special forces that 
prevent artificial grid distortion (hourglass-
type motions) [4]. This kind of numerical 
scheme adds an additional requirement to 
the remap phase: that the subcell densities 
(corresponding to subcell masses) have to 
be conservatively interpolated in addition to 
nodal velocities and cell-centered densities 
and internal energy. In the remap phase, we 
assume that the rezone algorithm produces 
a mesh that is “close” to the Lagrangian 
mesh so that a local remapping algorithm 
(i.e., where mass and other conserved 
quantities are only exchanged between 
neighboring cells) can be used.

Our new remapping algorithm consists of 
three stages.
• A gathering stage, where we define 

momentum, internal energy, and kinetic 
energy in the subcells in a conservative 
way such that the corresponding total 
quantities in the cell are the same as at the 
end of the Lagrangian phase.

• A subcell remapping stage, where we 
conservatively remap mass, momentum, 
internal, and kinetic energy from the 
subcells of the Lagrangian mesh to the 
subcells of the new rezoned mesh.

• A scattering stage, where we conservatively 
recover the primary variables: subcell 
density, nodal velocity, and cell-centered 
specific internal energy on the new 
rezoned mesh.

We have proved that our new remapping 
algorithm is conservative (in mass, 
momentum, and total energy), reversible 
(if the old and new meshes are identical then 
the primitive variables are kept unchanged), 
at least positive (density and specific internal 
energy are kept positive thanks to a repair 
method, at most, preserving a maximum 
principle), and satisfies the DeBar consistency 
condition (if a body has a uniform velocity 
and spatially varying density, then the 
remapping process should exactly reproduce a 
uniform velocity). We have also demonstrated 
computationally that our new remapping 
method is robust and accurate for a series of 
test problems in one and two dimensions. 
Figure 1 presents the results of the Sedov 
blastwave in 2D Cartesian coordinates for a 
polygonal mesh in ALE regime: a cylindrical 
shock wave is initiated at the origin and at 
t = 1.0 its exact location is r = 1. In this run 
the rezone strategy improves the mesh quality 
and the remapping technique preserves the 
accuracy of the Lagrangian scheme without 
the its pathological behaviors.
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Figure 1—
Sedov blastwave on a polygonal mesh (1325 nodes and 775 cells)—ALE-10—regime-mesh and density contours (exponential scale) 
at t = 0.1, and t = 1.0.
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